89 research outputs found

    Fishing out the signal in polypharmacological high-throughput screening data using novel navigator cheminformatics software

    Get PDF
    Many drugs are characterized by polypharmacological mechanisms of action. Thus, prospective drug discovery studies often start by testing large compound libraries in multiple and diverse High-Throughput Screening (HTS) assays. These large heterogeneous data collections pose numerous computational challenges concerning processing, curation, and analysis of untreated output files generated by plate readers. We have developed the freely-accessible HTS Navigator software to enable and facilitate the processing and analysis of polypharmacological HTS data. We report on the capabilities of Navigator and present several case studies where we employed cheminformatics approaches embedded within the Navigator to curate and analyze large datasets of compounds tested toward different panels of targets

    Data Set Modelability by QSAR

    Get PDF
    We introduce a simple MODelability Index (MODI) that estimates the feasibility of obtaining predictive QSAR models (Correct Classification Rate above 0.7) for a binary dataset of bioactive compounds. MODI is defined as an activity class-weighted ratio of the number of the nearest neighbor pairs of compounds with the same activity class versus the total number of pairs. The MODI values were calculated for more than 100 datasets and the threshold of 0.65 was found to separate non-modelable from the modelable datasets

    Computer-Assisted Decision Support for Student Admissions Based on Their Predicted Academic Performance

    Get PDF
    Objective. To develop predictive computational models forecasting the academic performance of students in the didactic-rich portion of a doctor of pharmacy (PharmD) curriculum as admission-assisting tools

    Trust, But Verify: On the Importance of Chemical Structure Curation in Cheminformatics and QSAR Modeling Research

    Get PDF
    Molecular modelers and cheminformaticians typically analyze experimental data generated by other scientists. Consequently, when it comes to data accuracy, cheminformaticians are always at the mercy of data providers who may inadvertently publish (partially) erroneous data. Thus, dataset curation is crucial for any cheminformatics analysis such as similarity searching, clustering, QSAR modeling, virtual screening, etc., especially nowadays when the availability of chemical datasets in public domain has skyrocketed in recent years. Despite the obvious importance of this preliminary step in the computational analysis of any dataset, there appears to be no commonly accepted guidance or set of procedures for chemical data curation. The main objective of this paper is to emphasize the need for a standardized chemical data curation strategy that should be followed at the onset of any molecular modeling investigation. Herein, we discuss several simple but important steps for cleaning chemical records in a database including the removal of a fraction of the data that cannot be appropriately handled by conventional cheminformatics techniques. Such steps include the removal of inorganic and organometallic compounds, counterions, salts and mixtures; structure validation; ring aromatization; normalization of specific chemotypes; curation of tautomeric forms; and the deletion of duplicates. To emphasize the importance of data curation as a mandatory step in data analysis, we discuss several case studies where chemical curation of the original “raw” database enabled the successful modeling study (specifically, QSAR analysis) or resulted in a significant improvement of model's prediction accuracy. We also demonstrate that in some cases rigorously developed QSAR models could be even used to correct erroneous biological data associated with chemical compounds. We believe that good practices for curation of chemical records outlined in this paper will be of value to all scientists working in the fields of molecular modeling, cheminformatics, and QSAR studies

    Chemistry-wide association studies (CWAS) to determine joint toxicity effects of co-occurring chemical features

    Get PDF
    Individual structural alerts often fail to accurately predict chemical toxicity as they tend to overlook the moderating effects of other co-occurring alerts. Features are said to have statistical interaction effects when one changes or modulates the effect of another on the target property. Here we introduce Chemistry-Wide Association Study (CWAS; by analogy with GWAS in genomics) to systematically elicit the individual and interaction effects of chemical features on the target property

    HTS navigator: freely accessible cheminformatics software for analyzing high-throughput screening data

    Get PDF
    Summary: We report on the development of the high-throughput screening (HTS) Navigator software to analyze and visualize the results of HTS of chemical libraries. The HTS Navigator processes output files from different plate readers' formats, computes the overall HTS matrix, automatically detects hits and has different types of baseline navigation and correction features. The software incorporates advanced cheminformatics capabilities such as chemical structure storage and visualization, fast similarity search and chemical neighborhood analysis for retrieved hits. The software is freely available for academic laboratories

    Predicting Binding Affinity of CSAR Ligands Using Both Structure-Based and Ligand-Based Approaches

    Get PDF
    We report on the prediction accuracy of ligand-based (2D QSAR) and structure-based (MedusaDock) methods used both independently and in consensus for ranking the congeneric series of ligands binding to three protein targets (UK, ERK2, and CHK1) from the CSAR 2011 benchmark exercise. An ensemble of predictive QSAR models was developed using known binders of these three targets extracted from the publicly-available ChEMBL database. Selected models were used to predict the binding affinity of CSAR compounds towards the corresponding targets and rank them accordingly; the overall ranking accuracy evaluated by Spearman correlation was as high as 0.78 for UK, 0.60 for ERK2, and 0.56 for CHK1, placing our predictions in top-10% among all the participants. In parallel, MedusaDock designed to predict reliable docking poses was also used for ranking the CSAR ligands according to their docking scores; the resulting accuracy (Spearman correlation) for UK, ERK2, and CHK1 were 0.76, 0.31, and 0.26, respectively. In addition, performance of several consensus approaches combining MedusaDock and QSAR predicted ranks altogether has been explored; the best approach yielded Spearman correlation coefficients for UK, ERK2, and CHK1 of 0.82, 0.50, and 0.45, respectively. This study shows that (i) externally validated 2D QSAR models were capable of ranking CSAR ligands at least as accurately as more computationally intensive structure-based approaches used both by us and by other groups and (ii) ligand-based QSAR models can complement structure-based approaches by boosting the prediction performances when used in consensus

    Modeling Liver-Related Adverse Effects of Drugs Using kNN QSAR Method

    Get PDF
    Adverse effects of drugs (AEDs) continue to be a major cause of drug withdrawals both in development and post-marketing. While liver-related AEDs are a major concern for drug safety, there are few in silico models for predicting human liver toxicity for drug candidates. We have applied the Quantitative Structure Activity Relationship (QSAR) approach to model liver AEDs. In this study, we aimed to construct a QSAR model capable of binary classification (active vs. inactive) of drugs for liver AEDs based on chemical structure. To build QSAR models, we have employed an FDA spontaneous reporting database of human liver AEDs (elevations in activity of serum liver enzymes), which contains data on approximately 500 approved drugs. Approximately 200 compounds with wide clinical data coverage, structural similarity and balanced (40/60) active/inactive ratio were selected for modeling and divided into multiple training/test and external validation sets. QSAR models were developed using the k nearest neighbor method and validated using external datasets. Models with high sensitivity (>73%) and specificity (>94%) for prediction of liver AEDs in external validation sets were developed. To test applicability of the models, three chemical databases (World Drug Index, Prestwick Chemical Library, and Biowisdom Liver Intelligence Module) were screened in silico and the validity of predictions was determined, where possible, by comparing model-based classification with assertions in publicly available literature. Validated QSAR models of liver AEDs based on the data from the FDA spontaneous reporting system can be employed as sensitive and specific predictors of AEDs in pre-clinical screening of drug candidates for potential hepatotoxicity in humans

    Cheminformatics-aided pharmacovigilance: application to Stevens-Johnson Syndrome

    Get PDF
    Objective Quantitative Structure-Activity Relationship (QSAR) models can predict adverse drug reactions (ADRs), and thus provide early warnings of potential hazards. Timely identification of potential safety concerns could protect patients and aid early diagnosis of ADRs among the exposed. Our objective was to determine whether global spontaneous reporting patterns might allow chemical substructures associated with Stevens-Johnson Syndrome (SJS) to be identified and utilized for ADR prediction by QSAR models
    • …
    corecore